Connect with us

News

Thinking Machines Becomes OpenAI’s First Services Partner in APAC

Avatar photo

Published

on

How a Human-Centric Collaboration Is Turning AI Pilots into Real Business Impact

In a pivotal announcement in September 2025, Thinking Machines Data Science was named OpenAI’s first official Services Partner in the Asia-Pacific region. This landmark collaboration is not just about high-profile branding—it marks a significant evolution in how AI is being deployed across one of the world’s most dynamic markets.

Across APAC, more than half of enterprise leaders report experimenting with AI. Yet for many, the journey ends with limited pilots or isolated prototypes. This partnership aims to change that, moving companies from experimentation to real transformation by embedding OpenAI’s most advanced models—like GPT-5—into core business operations.

Thinking Machines brings a local, deeply practical approach to the table. Rather than positioning AI as a shiny object, they help organizations weave it into everyday workflows. Their focus includes training executives on how to use ChatGPT Enterprise, designing custom-built AI applications that operate with human oversight, and reshaping workflows so AI enhances rather than replaces human judgment.

What sets this collaboration apart is its emphasis on measurable outcomes. OpenAI’s Head of Go-to-Market in APAC, Andy Brown, has stressed that AI success should be defined by impact—time saved, processes optimized, and strategic decisions made faster and more accurately. Thinking Machines is executing this vision by helping companies unlock AI’s full potential in a practical, governance-conscious manner.

At the heart of the partnership is a human-in-command philosophy. Stephanie Sy, CEO and founder of Thinking Machines, emphasizes that true AI transformation relies as much on people as it does on models. Many companies see AI as something to adopt rather than something that changes how work gets done. This mindset gap often explains why organizations fail to scale their AI efforts.

Instead of replacing human roles, Thinking Machines redefines them. AI handles repetitive tasks like information retrieval and first drafts, while humans make final decisions, verify accuracy, and manage exceptions. This framework ensures accountability with clear audit trails and source citations, especially in high-stakes environments like banking or government.

One of the most exciting aspects of this partnership is the development of agentic AI systems. These advanced tools go beyond single-prompt interactions and can manage complex workflows autonomously—navigating websites, submitting forms, sending emails, or pulling data from multiple sources. Crucially, they’re designed to operate with clear oversight and human checkpoints, so they don’t become “black boxes.”

Governance is another area where Thinking Machines has taken a distinct approach. Too often, compliance and ethics are treated as an afterthought. But in this model, governance is built into the workflow itself. Organizations can enforce role-based access to information, define approved data sources, and maintain traceability throughout the AI’s decision-making process. This enables broader deployment without compromising security or compliance.

Thinking Machines has also distinguished itself through its localization-first strategy. It starts by building region-specific solutions in places like the Philippines, Singapore, and Thailand. From there, they scale up with the right adaptations for language, regulatory frameworks, and cultural norms. This approach avoids the common trap of importing AI models designed in the West and expecting them to succeed unchanged across Asia.

Equally important is their investment in skills development. Thinking Machines has already trained more than 10,000 professionals across the region. These aren’t generic workshops—they focus on giving participants real-world prompting, workflow design, and evaluation skills. Many attendees report saving one to two hours of work daily after just a day of training. That’s not just a productivity win; it’s cultural transformation in motion.

One example of their work is BEAi, a multilingual assistant built for the Bank of the Philippine Islands. The tool offers policy-compliant answers in English, Filipino, and Taglish—complete with citations and compliance guardrails. It’s not just smart; it’s culturally and operationally aware, making it truly enterprise-grade.

Looking ahead, Sy sees AI as evolving into a trusted “second brain” for professionals. In finance, this might mean real-time, regulation-aware assistants. In supply chains, AI could dynamically adjust logistics plans in response to new data. In retail, customer-facing agents might deliver personalized experiences within strict brand and privacy parameters. These aren’t futuristic fantasies—they’re actively being built today.

This partnership signals a turning point for AI in the region. It’s not about chasing the next big trend. It’s about making AI useful, responsible, and scalable. And with OpenAI’s cutting-edge tools and Thinking Machines’ grounded, human-first methodology, APAC may be on the verge of leading the next wave of enterprise AI adoption.

AI Model

Sora 2 vs. Veo 3: Which AI Video Generator Reigns Supreme?

Avatar photo

Published

on

By

In the rapidly evolving world of generative AI, text-to-video has become the new frontier. The release of OpenAI’s Sora 2 and Google DeepMind’s Veo 3 has ignited fresh debate over which model currently leads the charge. Both promise cinematic-quality video from text prompts, yet their strengths—and limitations—reveal very different approaches to solving the same problem. So, which one is truly pushing the envelope in AI-generated video? Let’s take a closer look.


The Shape of a New Medium

Sora 2 and Veo 3 aren’t just iterative updates; they represent a leap forward in AI’s ability to understand, simulate, and visualize the physical world. Veo 3, unveiled as part of Google’s Gemini ecosystem, emphasizes realism, cinematic polish, and high-fidelity audio. Sora 2, OpenAI’s successor to its original Sora model, doubles down on deep physics simulation, coherence across time, and intelligent prompt understanding.

Both models target similar creative workflows—commercials, short films, visual storytelling—but their design choices show stark contrasts in how they get there.


Visual Realism and Cinematic Quality

On first impression, both Sora 2 and Veo 3 impress with sharp resolution, consistent lighting, and smooth transitions. Veo 3, in particular, demonstrates a clear edge in cinematic effects: seamless camera movement, depth-of-field rendering, and visually stunning transitions that mimic professional film work. Veo’s ability to replicate human-directed cinematography stands out.

Sora 2, by contrast, leans harder into realistic physics and object behavior. Where Veo 3 dazzles with filmic beauty, Sora 2 seems more intent on ensuring that what happens on screen makes sense. Vehicles move with believable momentum, liquids splash and flow realistically, and characters interact with their environment in ways that respect gravity and friction. This physics-aware realism may not always be as visually glossy as Veo 3, but it adds a layer of believability that matters for narrative coherence.


Temporal Coherence and Scene Continuity

A major weakness of early video generators was temporal inconsistency: objects morphing frame-to-frame, faces flickering, or scene geometry drifting. Sora 2 makes significant strides in solving this. Across 10-second (and sometimes longer) videos, objects remain stable, actions continue naturally, and the scene retains structural integrity.

Veo 3 also shows improvement here, but with caveats. While its short clips (typically 4–8 seconds) hold together well, subtle issues can emerge in complex motion sequences or rapid cuts. In side-by-side prompts involving a person dancing through a rainstorm or a dog running through a forest, Sora 2 often preserves object integrity and movement more effectively over time.

However, Veo 3’s strength in lighting and composition can sometimes make its videos appear more polished—even when inconsistencies are present.


Audio Integration and Lip Sync

Here’s where Veo 3 pulls ahead decisively. Veo 3 not only generates realistic visuals but also supports synchronized audio, including ambient noise, sound effects, and even lip-synced speech. This makes it uniquely suited for use cases like video ads, dialogue scenes, and social media content that require full audiovisual immersion.

Sora 2 has made progress in audio generation, but lip-sync remains rudimentary in current versions. While OpenAI has demonstrated Sora’s ability to match ambient sounds to visuals (like footsteps or weather effects), it has not yet caught up to Veo in producing realistic spoken dialogue.

For creators working in multimedia formats, Veo 3’s audio capabilities are a game-changer.


Prompt Control and Creative Flexibility

Controllability—how much influence users have over the generated output—is key to unlocking creative potential. Veo 3 offers a relatively straightforward prompting system, often yielding high-quality results with minimal fine-tuning. However, it sometimes sacrifices precision for polish; complex multi-step prompts or shot-specific instructions can be hard to achieve.

Sora 2, in contrast, supports a more nuanced form of instruction. It appears better at following detailed, layered prompts involving camera angles, character action, and scene transitions. This makes it especially appealing to storytellers or developers who want fine-grained control over the output.

If you’re crafting a multi-part scene with shifting perspectives and nuanced interactions, Sora 2 often delivers a more controllable, logically grounded result.


Limitations and Access

Despite their power, both models remain gated behind layers of access control. Veo 3 is currently integrated into Google’s suite of tools and remains limited to selected creators, while Sora 2 is available through invite-only access via OpenAI’s platform.

Sora 2 also enforces stricter prompt filtering—especially around violence, celebrities, and copyrighted characters—making it less permissive in some creative contexts. Veo 3, while still governed by safety policies, appears slightly more lenient in some edge cases, though this can change with updates.

Both models are also computationally intensive, and neither is fully accessible via open API or commercial licensing at scale yet.


Final Verdict: Different Strengths, Different Futures

If you’re choosing between Sora 2 and Veo 3, the best answer may not be “which is better?” but “which is better for you?”

  • Choose Veo 3 if your priority is audiovisual polish, cinematic beauty, and natural soundscapes. It’s ideal for creators looking to generate short, eye-catching content with minimal post-processing.
  • Choose Sora 2 if your work demands physical realism, temporal stability, or precise narrative control. It’s a better fit for complex scenes, storytelling, and simulation-heavy tasks.

Both are leading the charge into a future where the boundary between imagination and reality blurs further with every frame. As the models continue to evolve, the true winners will be the creators who learn to harness their distinct strengths.

Continue Reading

Education

Fluent in Code: Navigating the New World of AI-Powered Language Learning

Avatar photo

Published

on

By

Learning a foreign language has always required commitment — hours of practice, expensive classes, and exposure to native speakers. But now, a new companion has entered the scene: artificial intelligence. With AI models like ChatGPT, tools powered by Grok’s Ani, and a wave of emerging apps, it’s never been easier—or cheaper—to start your language journey. But can these digital tutors really deliver fluency? Let’s dive into the possibilities, pitfalls, and the best free or low-cost AI tools available right now.

The AI Advantage: Why More People Are Skipping the Classroom

AI offers a compelling pitch for anyone intimidated by traditional language learning routes. The tools are available 24/7, often free or inexpensive, and adapt instantly to your level and interests. Here’s why it’s catching on:

  • Cost-effective: Many general-purpose AI models like ChatGPT offer free tiers or require only a basic subscription, making them far cheaper than classes or tutors.
  • Always-on access: Whether it’s midnight or your lunch break, AI doesn’t sleep. You can practice anytime, anywhere.
  • Custom feedback: AI can correct your grammar, suggest better word choices, and even roleplay everyday scenarios in your target language.
  • Zero judgment: Learners often feel anxious about speaking with humans. AI offers a pressure-free way to make mistakes and learn from them.

In essence, AI gives you a patient, tireless, and responsive partner. But it’s not a silver bullet.

The Drawbacks: What AI Still Can’t Do

While AI language learning tools are powerful, they’re not flawless. Here’s where they fall short:

  • Cultural nuance is limited: AI may know grammar, but it often misses idioms, tone, and the social subtleties of real communication.
  • Risk of errors: AI can sometimes provide inaccurate or unidiomatic translations or explanations. Without a human teacher, you might not know what’s off.
  • Speech limitations: Even with voice-enabled tools, AI pronunciation might not match native speech exactly — and it can struggle to understand heavily accented input.
  • No real-world exposure: AI can’t replicate the experience of talking to a real person in a café, on the street, or in a business meeting.
  • Motivation still matters: AI might be engaging, but it won’t push you to keep going. You’re still the one who has to show up every day.

The verdict? AI is a fantastic assistant but works best as part of a broader learning strategy that includes immersion, real interaction, and diverse resources.

Mapping the AI Language Learning Landscape

So, what are your options if you want to get started? Here’s an overview of the most popular and accessible ways people are using AI to learn languages — with a focus on free or low-cost tools.

1. ChatGPT and General AI Chatbots

One of the most flexible approaches is using a general-purpose model like ChatGPT (from OpenAI) or Claude (from Anthropic) as your language partner. Just prompt it to:

  • “Speak only in French and help me practice everyday conversation.”
  • “Correct my Spanish paragraph and explain the grammar mistakes.”
  • “Teach me five useful idioms in Italian.”

Many learners use ChatGPT’s voice feature to practice listening and speaking, even roleplaying restaurant scenarios or travel situations. It’s like having a personal tutor who never runs out of patience.

2. Grok’s Ani: The Friendly AI Tutor

If you’re part of the Grok AI ecosystem, you may have access to Ani, a conversational AI designed to help users learn languages in a more interactive and emotionally intelligent way. Ani aims to go beyond correction—it encourages, adapts, and even gives personality to your learning partner. Users report that the emotional tone and feedback from Ani helps build confidence, especially in early stages of learning.

3. Voice-Based AI Tools

For those who want to speak and be heard, apps like Gliglish and TalkPal let you practice conversations using your voice. These tools simulate real-life dialogues and provide real-time feedback. They often use GPT-style models on the backend, with some offering limited free daily usage.

  • Gliglish: Offers free speaking practice and realistic conversation scenarios.
  • TalkPal: Lets you converse by text or voice, with personalized feedback.

These are great for practicing pronunciation and spontaneous response — key skills for fluency.

4. AI-Powered Apps with Freemium Models

Several newer apps integrate LLMs like GPT to offer personalized lessons, dialogues, or speaking drills:

  • Speak: Uses OpenAI’s tech to simulate natural conversations and offers corrections.
  • Loora AI and LangAI: Focus on business or casual dialogue training using AI chats.

While many of these are paid, they typically offer free trials or limited daily use, enough for a solid daily practice session without a subscription.

5. DIY AI Setups and Open Source Tools

Tech-savvy learners are also building their own setups using tools like OpenAI’s Whisper (for speech recognition) combined with GPT for dialogue generation. Guides exist for setting up roleplay bots, combining voice input and AI-generated responses for a truly custom tutor experience.

For written language learning, tools like Tatoeba (a multilingual sentence database) or LanguageTool (an open-source grammar checker) can be used alongside AI to get example sentences or polish writing.

What People Are Actually Using

Among language learners, the most common practice seems to be leveraging ChatGPT or similar LLMs to:

  • Practice writing and get corrections
  • Simulate conversation scenarios
  • Translate and explain phrases
  • Build vocabulary with flashcards or custom quizzes

Many learners supplement this with speech-based apps or tools like Gliglish for pronunciation and conversation. Community feedback on Reddit and language forums consistently highlights the flexibility and personalization AI provides as the main draw.

Final Thoughts: Should You Learn a Language with AI?

If you’re considering learning a new language, AI offers an incredibly accessible, customizable, and low-pressure entry point. You can use it to build a habit, sharpen your skills, and explore a language before committing to more intensive study.

But remember: AI is a tool, not a replacement for the real-world experience. Use it to complement human interaction, cultural immersion, and diverse materials. The best results come when you combine AI’s strengths—endless practice, instant feedback, low cost—with your own curiosity and consistency.

So go ahead — say “bonjour” to your new AI tutor.

Continue Reading

AI Model

Ray3 by Luma AI: The First Reasoning Video Model That’s Changing the Game for Creators

Avatar photo

Published

on

By

The Future of Video Starts Here

In a world saturated with generative content tools, few innovations truly reset the creative landscape. But Luma AI’s latest model, Ray3, just might be one of them.

Touted as the world’s first reasoning-capable video generation model, Ray3 doesn’t just turn text into moving images—it thinks, plans, and refines. And for filmmakers, designers, animators, and creators across the board, it promises something most AI tools still can’t deliver: control, quality, and cinematic depth.


What Makes Ray3 Different

Unlike typical AI video generators that fire off a single clip from your prompt and hope for the best, Ray3 is built to reason. It operates more like a creative collaborator—reading your input, breaking it down into visual tasks, checking its work, and upgrading the result to cinematic quality.

This “thinking before rendering” architecture means you get:

  • Smarter scenes: with better alignment between prompt, motion, and story.
  • Cleaner drafts: that evolve into hi-fi, high dynamic range (HDR) final cuts.
  • Real-time visual feedback: draw on a frame to guide the camera or movement.

Ray3 even allows creators to sketch annotations—like arrows for motion or curves for a camera path—and have the model understand and execute them. This isn’t just text-to-video; it’s direction-to-video.


HDR Native, Studio-Ready

One of Ray3’s most impressive feats is its ability to generate video natively in HDR, supporting 10-, 12-, and 16-bit color depths. For anyone working in film, advertising, or visual effects, this is more than a feature—it’s a lifeline.

With EXR and ACES export support, you can finally drop AI-generated footage directly into professional post-production workflows without conversion or quality loss. The footage is not just pretty—it’s usable, flexible, and cinematic.

This is especially important for:

  • Colorists who demand dynamic range and tonal control.
  • VFX artists who need footage to integrate seamlessly with rendered scenes.
  • Agencies that require brand-safe, edit-ready assets.

Built for Iteration, Not Guesswork

Ray3 introduces a draft and refine workflow. You can quickly explore ideas in lightweight draft mode—low latency, faster feedback—and then promote your favorite version to full high-fidelity output. This dramatically shortens the feedback loop and puts creative control back into the hands of the user.

Behind the scenes, Ray3 continuously evaluates its own output: Is the shot on target? Is the movement fluid? Does the light hit right? It loops through generations until the result feels polished—so you don’t have to waste time regenerating manually.


More Than a Generator—A Creative Partner

While many generative tools feel like black boxes, Ray3 invites interaction. Prompt it, sketch over frames, revise outputs, and guide its choices. The combination of natural language, visual annotation, and cinematic intelligence makes Ray3 a new kind of AI: one that collaborates instead of guessing.

For creators, this unlocks a new tier of control:

  • Want to simulate a dolly zoom or pan? Sketch the camera path.
  • Need to maintain a character’s appearance across scenes? Ray3 tracks identity.
  • Trying to hit a visual beat or dramatic moment? Refine and direct like on a set.

Why You Should Try Ray3 Now

If you’re a creative looking to break into AI-driven video, Ray3 offers the most professional, flexible, and intuitive workflow to date. You no longer have to choose between speed and quality or creativity and control. Ray3 gives you all of it—cinema-quality video with real creative direction.

Whether you’re building a storyboard, visualizing a scene, crafting an ad, or just exploring visual storytelling, Ray3 invites you to create faster, better, and with far more control than ever before.

This isn’t just the next step in AI video. It’s a leap.

Continue Reading

Trending